Allogeneic major histocompatibility complex‐mismatched equine bone marrow‐derived mesenchymal stem cells are targeted for death by cytotoxic anti‐major histocompatibility complex antibodies

نویسندگان

  • A.K. Berglund
  • L.V. Schnabel
چکیده

BACKGROUND Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. OBJECTIVES To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. STUDY DESIGN Experimental controlled study. METHODS Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. RESULTS Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. MAIN LIMITATIONS This study examined MSC death in vitro only and utilized antisera from a small number of horses. CONCLUSIONS The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming Growth Factor-β2 Downregulates Major Histocompatibility Complex (MHC) I and MHC II Surface Expression on Equine Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Other Phenotypic Cell Surface Markers

Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Effective and safe allogeneic therapy may be hindered, however, by recipient immune recognition and rejection of major histocompatibility complex (MHC)-mismatched MSCs. Development of strategies to prevent immune rejection of MHC-mismatched MSCs in vivo is necessary to enhance c...

متن کامل

Mesenchymal stromal cells transiently alter the inflammatory milieu post-transplant to delay graft-versus-host disease.

BACKGROUND Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating...

متن کامل

Antigen-primed CD8+ T cells can mediate resistance, preventing allogeneic marrow engraftment in the simultaneous absence of perforin-, CD95L-, TNFR1-, and TRAIL-dependent killing.

Engraftment failure following allogeneic bone marrow (BM) transplantation is of clinical concern particularly involving T-cell-depleted inoculum and transplantations for aplastic anemia. Immune resistance by lymphoid and natural killer (NK) populations with "barrier" function is well established. Major histocompatibility complex (MHC)-identical marrow allografts were examined to investigate eff...

متن کامل

Evaluation of β-actin as a Reference Gene for Comparative Expression Analysis of Equine Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells by qRT-PCR

Background Bone marrow and adipose tissue are two main sources of mesenchymal stem cells (MSCs). Some of studies suggest that there are some differences in gene expression profile of MSCs-derived from various tissues. To investigate gene expression profile by qRT-PCR, an appropriate reference gene with stable expression level should be chosen for normalizing data.  This study was designed to e...

متن کامل

Preferential expansion of human umbilical cord blood-derived CD34-positive cells on major histocompatibility complex-matched amnion-derived mesenchymal stem cells.

BACKGROUND We previously found in a murine hematopoietic system that hematopoietic stem cells show high differentiation and proliferation capacity on bone marrow-derived mesenchymal stem cells/stromal cells (microenvironment) with "self" major histocompatibility complex (MHC). DESIGN AND METHODS We examined whether amnion-derived adherent cells have the characteristics of mesenchymal stem cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017